9,977 research outputs found

    Matching the Nagy-Soper parton shower at next-to-leading order

    Get PDF
    We present an MC@NLO-like matching of next-to-leading order QCD calculations with the Nagy-Soper parton shower. An implementation of the algorithm within the HELAC-DIPOLES Monte Carlo generator is used to address the uncertainties and ambiguities of the matching scheme. First results obtained using the Nagy-Soper parton shower implementation in DEDUCTOR in conjunction with the HELAC-NLO framework are given for the pp -> top anti-top j + X process at the LHC with sqrt(s)=8 TeV. Effects of resummation are discussed for various observables.Comment: 53 pages, 18 figures, 3 tables. References and a few typos corrected, acknowledgments added, dependence on the variation of the starting shower time corrected, version to appear in JHE

    Off-shell Top Quarks with One Jet at the LHC: A comprehensive analysis at NLO QCD

    Get PDF
    We present a comprehensive study of the production of top quark pairs in association with one hard jet in the di-lepton decay channel at the LHC. Our predictions, accurate at NLO in QCD, focus on the LHC Run II with a center-of-mass energy of 13 TeV. All resonant and non-resonant contributions at the perturbative order O(αs4α4){\cal O}(\alpha_s^4 \alpha^4) are taken into account, including irreducible backgrounds to ttˉjt\bar{t}j production, interferences and off-shell effects of the top quark and the WW gauge boson. We extensively investigate the dependence of our results upon variation of renormalisation and factorisation scales and parton distribution functions in the quest for an accurate estimate of the theoretical uncertainties. Additionally, we explore a few possibilities for a dynamical scale choice with the goal of stabilizing the perturbative convergence of the differential cross sections far away from the ttˉt\bar{t} threshold. Results presented here are particularly relevant for searches of new physics as well as for precise measurements of the top-quark fiducial cross sections and top-quark properties at the LHC.Comment: 51 pages, 36 figures, 6 tables, version to appear in JHE

    Black Hole Entropy in the presence of Chern-Simons Terms

    Get PDF
    We derive a formula for the black hole entropy in theories with gravitational Chern-Simons terms, by generalizing Wald's argument which uses the Noether charge. It correctly reproduces the entropy of three-dimensional black holes in the presence of Chern-Simons term, which was previously obtained via indirect methods.Comment: v2: 12 pages, added reference

    Back Reaction of Hawking Radiation on Black Hole Geometry

    Full text link
    We propose a model for the geometry of a dynamical spherical shell in which the metric is asymptotically Schwarzschild, but deviates from Ricci-flatness in a finite neighbourhood of the shell. Hence, the geometry corresponds to a `hairy' black hole, with the hair originating on the shell. The metric is regular for an infalling shell, but it bifurcates, leading to two disconnected Schwarzschild-like spacetime geometries. The shell is interpreted as either collapsing matter or as Hawking radiation, depending on whether or not the shell is infalling or outgoing. In this model, the Hawking radiation results from tunnelling between the two geometries. Using this model, the back reaction correction from Hawking radiation is calculated.Comment: Latex file, 15 pages, 4 figures enclosed, uses eps

    Separability and distillability in composite quantum systems -a primer-

    Get PDF
    Quantum mechanics is already 100 years old, but remains alive and full of challenging open problems. On one hand, the problems encountered at the frontiers of modern theoretical physics like Quantum Gravity, String Theories, etc. concern Quantum Theory, and are at the same time related to open problems of modern mathematics. But even within non-relativistic quantum mechanics itself there are fundamental unresolved problems that can be formulated in elementary terms. These problems are also related to challenging open questions of modern mathematics; linear algebra and functional analysis in particular. Two of these problems will be discussed in this article: a) the separability problem, i.e. the question when the state of a composite quantum system does not contain any quantum correlations or entanglement and b) the distillability problem, i.e. the question when the state of a composite quantum system can be transformed to an entangled pure state using local operations (local refers here to component subsystems of a given system). Although many results concerning the above mentioned problems have been obtained (in particular in the last few years in the framework of Quantum Information Theory), both problems remain until now essentially open. We will present a primer on the current state of knowledge concerning these problems, and discuss the relation of these problems to one of the most challenging questions of linear algebra: the classification and characterization of positive operator maps.Comment: 11 pages latex, 1 eps figure. Final version, to appear in J. Mod. Optics, minor typos corrected, references adde

    5D Black Holes and Strings with Higher Derivatives

    Get PDF
    We find asymptotically flat black hole and string solutions to 5D supergravity in the presence of higher derivative terms. In some cases, including the fundamental heterotic string solution, the higher derivative terms smooth out naked singularities into regular geometries carrying zero entropy. We also compute corrections to the entropy of 5D Calabi-Yau black holes, and discuss the relation to previous results.Comment: 33 pages, 2 figs., harvmac; v2: typos corrected, references added v3: refs correcte
    • …
    corecore